Static linear and nonlinear elastic properties of normal and arterialized venous tissue in dog and man.
نویسندگان
چکیده
Ten normal and four transplanted canine jugular vein segments and four human saphenous vein segments were studied to determine the in vitro static elastic properties of venous tissue and their modification by transplantation into the arterial system. Both the intraluminal pressure and the longitudinal force were varied, and the resulting dimensions were recorded photographically. Venous segments manifested a hysteresis response but showed minimum tendency to creep. The pressure-strain relationships were curvilinear with an initial, highly compliant phase over the physiological venous pressure range followed by a relatively noncompliant phase. This transition occurred at lower pressures for jugular segments than it did for saphenous segments. In contrast, comparable-sized canine carotide artery segments did not show this essentially noncompliant phase over the pressure range studied (0 to 200 cm H2O). At comparable pressures and strains, the jugular vein segments were stiffer than the saphenous vein segments in both the circumferential and the longitudinal directions. At comparable strains, the saphenous vein moduli were similar to those in the carotid artery segments. Jugular segments transplanted into arterial circuits became virtually noncompliant and markedly inhomogeneous, with wall thickening and a histologic picture of intimal proliferation. They showed no tendency to "arterialize," that is, they failed to assume either the elastic or the histologic characteristics of arterial tissue.
منابع مشابه
Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping
In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...
متن کاملAnalysis of Motion of Micro-Gripper Exposed to the Electric Field and Thermal Stresses for Using in Micro-Robotics
Micro system technology is a relatively new scientific research that deals with the development and study of properties of materials in micro dimensions. Micro-grippers are widely used in switching, positioning, and assembling micron sized components in micro-robotics. In this study, the static and dynamic behavior of visco-elastic Micro-Tweezers under the thermal and electrostatic field is...
متن کاملNon-linear Static Modeling of Moderately Thick Functionally Graded Plate Using Dynamic Relaxation Method
In this paper, nonlinear static analysis of moderately thick plate made of functionally graded materials subjected to mechanical transverse loading is carried out using dynamic relaxation method. Mindlin first order shear deformation theory is employed to consider thick plate. Discretized equations are extracted for geometrically nonlinear behavior analysis.Loading Conditions and boundary condi...
متن کاملNumerical Study of Progressive Collapse in Intermediate Moment Resisting Reinforced Concrete Frame Due to Column Removal
Progressive collapse is a chain reaction of failures propagating throughout a portion of the structure disproportionate to the original local failure occurring when a sudden loss of a critical load‐bearing element initiates a structural element failure, eventually resulting in partial or full collapse of the structure. Both General Services Administration (GSA) and United States Department of D...
متن کاملNon-Linear Analysis of Asymmetrical Eccentrically Stiffened FGM Cylindrical Shells with Non-Linear Elastic Foundation
In this paper, semi-analytical method for asymmetrical eccentrically stiffened FGM cylindrical shells under external pressure and surrounded by a linear and non-linear elastic foundation is presented. The proposed linear model is based on two parameter elastic foundation Winkler and Pasternak. According to the von Karman nonlinear equations and the classical plate theory of shells, strain-displ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 37 4 شماره
صفحات -
تاریخ انتشار 1975